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Abstract. The effect of steric frustration on the collapse of a linear homopolymer is
investigated. Depending on the temperature and the strength of the frustration, we find that
three different phases exist: swollen, compact and branched. We study the phase diagram and
the critical behaviour of the system through exact enumerations and Monte Carlo simulations. In
addition we present an analytical argument which determines qualitatively the phase boundaries.
Despite the similarity between our model and one previously introduced in the literature, there
is a discrepancy on the value of a critical exponent.

A polymer in a good solvent is usually modelled by a self-avoiding walk (SAW). The self-
avoiding constraint takes into account the repulsive forces acting between monomers in a
real polymer. In this regime the polymer radius of gyration grows as〈R〉 ∼ NνSAW, where
N is the molecular weight andνSAW = 3

4 [1] in d = 2 andνSAW ∼ 0.59 [2] in d = 3.
If, however, the polymer is immersed in a poor solvent, attractive van der Waals

interactions between the monomers will also come into play. They will cause, at sufficiently
low temperatures, a collapse of the polymer from a self-avoiding into a compact, globular
configuration where the exponentν takes on the value1

d
, whered is the dimension of space.

The transition point is calledθ point [2, 3] and it is characterized by an exponentνθ = 4
7

in d = 2 [4] (d = 3 turns out to be the upper critical dimensionality, so thatνθ = 1
2).

The θ transition has in recent years attracted much theoretical interest, mostly in
connection with universality issues [4, 5]. In all these studies the short-range interactions
were modelled in the simplest ways and no particular attention has been paid to verify
whether their form can influence the nature of the collapsed phase. Recently, however,
several authors [6–8] have outlined the possibility that peculiar interaction mechanisms can
induce a collapse in different stages and towards different compact phases. This possibility
would imply a richer scenario and a wider degree of nonuniversality than those contemplated
in the usualθ point physics. In this respect we find of particular interest a model introduced
in [8], since it exhibits a rich phase diagram with a swollen (νs = 3

4 [1]), a compact (νc = 1
2)

and a branched polymer phase (νb = 0.640 75± 0.000 15 [9]).
In this work we consider a two-dimensional homopolymer that differs from the model in

[8] only in microscopic details. These differences turn out to be irrelevant, so that the two
models present the same scaling behaviour. It is interesting to note that both formulations
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can be directly related to a model recently introduced [10] to mimic protein behaviour and
in particular to take into account that different amino acids have different sizes and therefore
a different capability of admitting surrounding molecules. We believe this provides a nice
physical interpretation, not underlined in [8].

For the sake of simplicity we consider the model on a square lattice, but generalization
to different lattices and/or higher dimensions is also possible. Leti = 0 . . . N be the
coordinate of the vertices along the walk. A pair of nonconsecutive vertices in the chain
(|i− j | 6= 1) interact through an attractive nearest-neighbour potentialω. This would be the
standard lattice model studied for the collapse transition of linear polymers [5]. In addition,
we have included an effect of steric frustration by assigning an energy penaltyε to each
monomeri with four nearest-neighbour sites occupied (including possibly monomersi + 1
and i − 1). The partition function of the model can be written as

ZN =
∑
m,l

CN(m, l)e
ωm−εl (1)

where CN(m, l) denotes the number of distinctN -step SAWs withm contacts andl
‘frustrated’ monomers. Forε = 0 the model reduces to a standard attractive SAW: it
undergoes aθ collapse at a criticalωc ≈ 0.65. In the limitε →∞, instead, each monomer
is forced to have at most three nearest-neighbour sites occupied. The polymer therefore
optimizes its energy by arranging itself in two parallel straight segments at a distance of
one (in lattice units). This consideration suggests that for small enough temperatures (and
ε = ∞) the polymer could prefer a branched structure (on a coarsed-grained level). The
difference from the model considered in [8] is restricted to the form of the interaction
favouring ramification: in [8] a fugacityy was given to every step of the walk having two
parallel steps at unit distance.

We first studied the phase diagram of the system as a function ofε andω by performing
exact enumerations of SAWs up toN = 28 steps, extending theN = 26 steps analysis of
[8]. We have determined the series ofCN(m, l) andSN(m, l), whereSN(m, l) is the sum
of the radius of gyration of allN -step SAWs havingm contacts andl frustrated monomers.
From these quantities the average radius of gyration of the polymer can be easily computed
as

R2
N =

∑
m,l SN(m, l)e

ωm−εl∑
m,l CN(m, l)e

ωm−εl . (2)

To avoid parity effects we have grouped separately even and odd lengths and then formed
effective exponentsνN through the relation

2νN =
ln R2

N

R2
N−2

ln N
N−2

. (3)

In figure 1 we have plottedνN as a function ofω for (a) ε = 0.2 and (b) ε = ∞. In both
cases the curves intersect at a common point, signalling the presence of a transition from a
high- to a low-temperature phase [11]. From scaling theory we have taken the coordinates of
this intersection to be the criticalω and the value of the exponentν at the collapse transition.
In figure 2 we have reported the behaviour ofν along the transition line as a function of
ε. We have identified the transition point to be where the dispersion of theνN curves is
at a minimum. For small values ofε the critical exponent isν = 0.58± 0.01, whereas
by increasingε further it seems to move to a different value. This is an indication that a
transition from a swollen to a branched phase takes place. Universality class considerations
suggest that the curve of figure 2 ideally should be a step function and the rounded shape is
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Figure 1. Exact enumeration results for the effective exponentνN as a function ofω for (a)
ε = 0.2 and (b) ε = ∞. The lengths areN = 18, 20, 22, 24, 26, 28. Similar plots result from
considering odd lengths.

just a crossover effect. All the points in the transition line from the swollen to the compact
phase presumably belong to the universality class of theθ -collapse of a linear polymer,
so that the correlation length exponent isνs−c ≈ 0.57. Similarly one can predict that the
transition from swollen to branched polymer is dominated by a different unique fixed point,
which determines the critical exponentsνs−b (0.646 νs−b 6 0.75).

The complete phase diagram obtained from series analysis is shown in figure 3 as
isolated points. This is in good agreement with the phase diagram reported in [8]. The
relatively large error bars on the points determining the compact–branched transition reflect
the intrinsic difficulty of using series to describe such a transition [12]. Indeed most of
the νN curves do not intersect, although a region where their distance has a pronounced
minimum is visible. For this reason we have complemented the analysis by looking at a
thermal quantity such as the specific heat. The corresponding curves show a peak which
grows and sharpens with increasingN , possibly indicating the presence of a phase transition.

The phase behaviour of the system could also be conjectured from the following heuristic
argument, based on energy–entropy balance. We assume the polymer can be in three
different phases (swollen, compact and branched) and we estimate the corresponding free
energies by the competition between energy and entropy.

(i) Swollen phase. The average number of contacts〈m〉 in a noninteracting SAW is
〈m〉 ∼ aN , with a ≈ 0.16 [13], whereas the total number of SAWs scales asNSAW ∼ µNSAW,
whereµSAW ≈ 2.64 [14] is the connectivity constant of the SAWs. For sufficiently high
temperatures, the free energy of the swollen phase is therefore reasonably approximated by

βFs ' −aNω −N lnµSAW (4)
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Figure 2. Behaviour of the correlation length exponentν along the compact–swollen and
branched–swollen transition line, as obtained from series.

whereβ = 1/κBT . In principle one should also include in (4) a contribution proportional
to ε. We have determined from series the average number of vertices with four nearest
neighbour sites occupied〈l〉. It scales like〈l〉 ∼ bN , with b ' 0.03 and it is therefore
negligible.

(ii) Compact phase. The compact phase of a polymer can be suitably modelled by a
Hamiltonian walk, which is a space filling SAW visiting all sites of a lattice of linear size
N

1
2 . In this limit

βFc ' −N(ω − ε)−N lnµHW (5)

since each monomer has four nearest-neighbour sites occupied and the number of nonbonded
contacts is exactlyN . The connectivity constant could be taken to beµHW = 4

e
, which is

a mean-field approximation in very good agreement with the exact value [15].
(iii) Branched phase. In the limit ε → ∞, the free energy of the branched phase is

roughly

βFb ' −N
α
ω − N

α
lnµBP (6)

with µBP ∼ 5.21 [16]. The factorα in equation (6) arises from the peculiar structure of the
branched polymer, which makes the effective length of the chain shorter and, at the same
time, forces a certain number of contacts between monomers. Althoughα can be easily
inferred to be between 2 and 3, a precise determination of its value eludes us. For this
reason we have setα ' 2.35, in order to fit the branched–swollen transition asymptotically,
as determined from series analysis.
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Figure 3. Phase diagram of the system as a function ofω andε. The isolated points are obtained
from series analysis. The broken lines show the conjecture from heuristic calculations.

The broken lines in the phase diagram of figure 3 result from comparing expressions
(4)–(6) as a function ofω andε. The stable phase is determined by the lowest value of the
free energy.

To estimate the value of the critical exponentνs−b accurately we have considered the
caseε = ∞ separately. In this limiting case, all sites of the walk are prevented from
having more than three occupied neighbouring sites (including bonding neighbours). From
series analysis we quoteν = 0.70± 0.01. This value seems to be higher than that obtained
in [8], i.e. ν ' 0.65. For this reason we have complemented the analysis by carrying
out two distinct Monte Carlo procedures based on ‘dynamical growth’ [17] and pivot [18]
algorithms. The two approaches turned out to be statistically equivalent and in excellent
agreement with the series results obtained forN up to 28.

The stochastic techniques allowed an accurate calculation of the square gyration radii
for walks up to 45 sites with an estimated error of at most 1% for 0< β < 1.2. The values
of ν were obtained by first performing a smoothing procedure as described in [19] (which
involves a sum over an increasing number ofR2

N ). Then, by identifying the crossing of the
curves pertaining to lengthN andN+8 we identified the values ofνN+4. PlottingνN against
1/N shows a marked linear behaviour, the correlation coefficient beingr ≈ −0.85. By
linear regression we extrapolated the asymptotic valueνN→∞ obtainingνs−b = 0.695±0.006
and thus confirming the discrepancy withν ' 0.65.

In summary we have determined the phase diagram of model (1) by performing exact
enumerations of SAWs up to 28 steps and through a heuristic argument. Such a phase
diagram presents a swollen, a compact and a branched phase, in agreement with that obtained
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by Dekeyseret al [8]. The tricritical line separating the compact and the swollen phase
is in the θ point universality class. There is, instead, some uncertainty on the exponent
νs−b for the transition between the linear and branched polymer. Our value, deduced from
series analysis and Monte Carlo simulations, seems to be higher than those obtained in both
[8] and [6] (with a different model). The compact–branched phase transition, finally, needs
more investigations owing to a common limitation of series expansion for a similar problem
[12]. It is important to stress the importance of the square lattice in obtaining a branched
polymer phase. In the continuum, or on some other lattices the model (1) (if not suitably
modified) might replace this phase with a somewhat loosely packed compact phase†.

The model we have investigated can be thought of as an annealed version of an attractive
SAW. There are two types of beads: small beads which are allowed to have as many nearest
neighbours as possible and large beads which allow only one, nonbonded, nearest neighbour.
The parameterε plays the role of a fugacity for large beads. An interesting perspective
would be to analyse the model in its quenched version where a bead is small with probability
p and large with probability 1− p. In this case it is believed to capture the size effect of
different amino acids in the protein folding problem.
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